An application of Meir - Keeler type tripled fixed point theorem
نویسنده
چکیده
Berinde and Borcut [1] introduced the concept of triple fixed point and proof some related fixed point theorem with some applications. The aim of this paper is to extend the result of Berinde and Borcut [1]. Indeed, we introduced the definition of generalized g−Meir-Keeler type contractions and prove some tripled fixed point theorems under a generalized g−Meir-Keeler type contractive condition. We also give an application of main results of this paper. MSC: Primary 47H10 • Secondary 54H25
منابع مشابه
A Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type
In this paper, we generalize the Meir-Keeler condensing operators via a concept of the class of operators $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems. As an application of this extension, we analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally, we p...
متن کاملSimultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملMeir-Keeler Type Contraction Mappings in $c_0$-triangular Fuzzy Metric Spaces
Proving fixed point theorem in a fuzzy metric space is not possible for Meir-Keeler contractive mapping. For this, we introduce the notion of $c_0$-triangular fuzzy metric space. This new space allows us to prove some fixed point theorems for Meir-Keeler contractive mapping. As some pattern we introduce the class of $alphaDelta$-Meir-Keeler contractive and we establish some results of fixed ...
متن کاملFixed points of generalized $alpha$-Meir-Keeler type contractions and Meir-Keeler contractions through rational expression in $b$-metric-like spaces
In this paper, we first introduce some types of generalized $alpha$-Meir-Keeler contractions in $b$-metric-like spaces and then we establish some fixed point results for these types of contractions. Also, we present a new fixed point theorem for a Meir-Keeler contraction through rational expression. Finally, we give some examples to illustrate the usability of the obtained results.
متن کاملA new characterization for Meir-Keeler condensing operators and its applications
Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...
متن کامل